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Abstract

A unitary symplectic similarity transformation for certain Hamil-
tonian matrices to extended Hamiltonian Hessenberg form is pre-
sented. Whereas the classical Hessenberg form links to Krylov sub-
spaces, the extended Hessenberg form links to extended Krylov sub-
spaces. The presented algorithm generalizes thus the classic reduc-
tion to Hamiltonian Hessenberg form and offers more freedom in
the choice of extended Hamiltonian forms, to be used within an
extended Hamiltonian QR algorithm. Theoretical results identify-
ing the structure of the extended Hamiltonian Hessenberg form and
proofs of uniqueness of the reduction process are included. Numeri-
cal experiments confirm the validity of the approach.
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An extended Hessenberg form for Hamiltonian matrices∗

Micol Ferranti‡ Bruno Iannazzo§ Thomas Mach‡ Raf Vandebril‡

1 Introduction

The QR eigenvalue method is one of the most used algorithms to compute eigenvalues of medium
sized matrices [8,9]. It is a two step method: the matrix is first transformed, via unitary similarity
transformations, to a convenient condensed form, whose eigenvalues are then, in the second step,
computed via a suitable iterative method. This paper deals with the first step of a Hamiltonian
QR method, i.e., the reduction to a convenient condensed Hamiltonian form. The second step,
the actual QR algorithm, is discussed in the forthcoming paper [6].

The typical generic condensed form is the well known Hessenberg form [17]. However, if the
original matrix exhibits particular properties, the preservation of the structure through the whole
procedure is advisable, e.g. in model order reduction [7]. For this reason, some special formulations
of the QR method have been developed for specific classes of matrices, i.e., symmetric, unitary,
etc. On the other hand, it has been shown that the classic Hessenberg form is not the only possible
choice as an intermediate condensed form [15]. A much wider family of matrices can be used within
a QR-like algorithm. This family generalizes classes such as Hessenberg and Hessenberg-like, and
these matrices are called extended Hessenberg matrices.1

A Hamiltonian matrix is of the form

H =

[
A G
F −AH

]
∈ C2n×2n, (1)

where F = FH and G = GH . The eigenvalues of a Hamiltonian matrix are symmetric with respect
to the imaginary axis. To preserve this symmetry within a QR method, it is desirable to work
exclusively with Hamiltonian matrices during the iterative process. An algorithm with this feature
is said to be a Hamiltonian QR algorithm.

Unfortunately, the generic classical Hessenberg form does not retain the Hamiltonian structure.
Thus, many attempts have been made to design a suitable Hamiltonian condensed form, see, for
example, [4, 5, 13]. Until now, a Hamiltonian QR algorithm has only been found for matrices H,
partitioned as in (1), whose bottom-left block F has rank one [5]. This algorithm makes use of
the so called Hamiltonian Hessenberg form.

In this paper we will show how the arguments presented in [15] can be adapted to the Hamil-
tonian context, in order to derive new Hamiltonian condensed forms, which extend the classical
Hamiltonian Hessenberg form, for matrices whose bottom-left block has rank one.
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1The name extended refers to the link with extended Krylov subspaces, see [12] for details.
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The paper is organized as follows. In Section 2 and 3 we present some preliminary definitions
and results, which are necessary in the remainder of the text. A brief summary of the techniques
introduced in [15] is included. In Section 4 several theoretical results are presented, and the
definition of extended Hamiltonian Hessenberg form is given. In Section 5 the transformation
to extended Hamiltonian Hessenberg form is described. Also, the essential uniqueness of the
transformation is proved. Section 6 is devoted to numerical experiments. Conclusions are presented
in Section 7.

The following notation is used throughout this paper: the element of M in position (i, j) is
denoted by mi,j , its i-th column is indicated by mi, and we depict with M(i : j, k : `) the submatrix
of M consisting of rows i up to j, and columns k up to `. MT refers to the transpose of M , M to

the conjugate of M , and MH = M
T

to its Hermitian transpose. A matrix M is said to be unitary
when MMH = MHM = I, and Hermitian when M = MH . A per-Hermitian matrix M ∈ Cn×n

is a matrix that is Hermitian with respect to its anti-diagonal, i.e., mn−j+1,n−i+1 = m̄ij .

2 The extended Hessenberg form

Here, we recall some material regarding the extended Hessenberg form, which is a generalization
of the classic Hessenberg form introduced in the paper [15], to which we refer the reader for a full
detailed treatise.

The central idea consists of computing a QR factorization M = QR, where R is upper trian-
gular and the unitary factor Q is factored in a sequence of n− 1 special unitary transformations
following a prescribed ordering.

Before introducing the extended Hamiltonian Hessenberg form, we will briefly describe and an-
alyze the fundamental objects, namely unitary core transformations, on which the whole reasoning
is based.

Definition 1. A unitary core transformation is a matrix G ∈ Cn×n that is equal to the identity,
except for a unitary 2-by-2 block Gi = G(i : i+ 1, i : i+ 1), which is called active part.

All the core transformations used in this paper are unitary, thus we will omit the adjective
unitary from now on. One special class of core transformations are rotations, whose active part is

[
c s
−s c

]
,

with |c|2 + |s|2 = 1. All reasonings presented here are valid for any core transformation, but
rotations were used to implement the algorithm. We will use the same notation as in [15] to depict
core transformations in a figurative way: the symbol �� refers to a single core transformation. The
two arrows point at the rows on which the core transformation acts. We now recall some basic
properties and operations on core transformations.

The product of two core transformations acting on the same rows of a matrix is a core trans-
formation. For this reason, if two consequent core transformations are applied to the same rows,
we will directly depict them as one, and we will call it a fusion of core transformations, � �� � = �� .

Another, less trivial operation, is the turnover, if Uk and Wk are two core transformations
acting on rows k and k + 1 of a matrix, and Vk+1 is a core transformation acting on rows k + 1

and k + 2, then three core transformations Ũk+1, Ṽk and W̃k+1 exist, such that Ũk+1 and W̃k+1

act on rows k + 1 and k + 2, Ṽk acts on rows k and k + 1, and UkVk+1Wk = Ũk+1ṼkW̃k+1.
This result can graphically be depicted by

� ��
�
�

� =
�

�
�
�� � ,

and can be extended to arbitrarily long sequences of core transformations; see Lemma 2.5 in [15].
This allows one to modify the configuration of core transformations, moving the upper-left one to
the bottom-right part, or vice versa.
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Another important property, of which we will make a massive use in the next sections, is
the following. If M = QR is the QR factorization of a matrix M , where Q is a unitary matrix
represented by a sequence of core transformations following a certain pattern, then there exists
an RQ factorization M = R̃Q̃, where the transformations in Q̃ follow the same pattern as in Q;
see Lemma 2.6 in [15]. With pattern we refer to the order (up to commutativity) in which the
core transformations Qi appear. In practice, this means that we are able to move a bunch of core
transformations from one side to the other of an upper triangular matrix at any time, preserving
the original configuration.

We are now able to present the extended Hessenberg form and the reduction algorithm. Let
M ∈ Cn×n be a generic matrix. The goal is to compute unitary matrices V,Q and an upper
triangular matrix R such that V HMV = QR and Q is represented by n− 1 core transformations,
following a certain pattern fixed in advance. The classical Hessenberg form, which is a special case
where the transformations in Q form a descending sequence, is shown in the following example.

Example 2. (QR factorization of a Hessenberg matrix)
Let M ∈ Cn×n be a Hessenberg matrix. To compute a QR factorization of M we need to annihilate
all the nonzero entries of M below the diagonal. To do so, we start applying a first transformation
G1 which eliminates the element m2,1. Then we proceed applying a new transformation which
eliminates the entry m3,2 and so on, until we obtain an upper triangular matrix. The QR factor-
ization of M consists then of n− 1 core transformations ordered in a descending sequence and an
upper triangular matrix. The factorization can be depicted as

M = GH
1 · · ·GH

n−1R =

��
��
��
��




× × × × ×
× × × ×
× × ×
× ×
×



.

A descending sequence is not the only possible pattern core transformations can assume. If
M is, for example, the inverse of a Hessenberg matrix, its factorization contains an ascending
sequence of transformations

M = GH
1 · · ·GH

n−1R =

�
�
�

�
�

�
�
�




× × × × ×
× × × ×
× × ×
× ×
×



.

In [15] it was shown that any matrix M can be unitarily transformed into a matrix M̂ =

V HMV , factored by M̂ = QR where the core transformations representing the unitary factor Q
follow an arbitrarily prescribed pattern. Matrices satisfying such a factorization take the name of
extended Hessenberg matrices.

To transform M to M̂ we operate on the QR factorization of the matrix M , which typically
consists of a pyramid-shaped pattern of core transformations2

M =

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�� � � �




× × × × ×
× × × ×
× × ×
× ×
×



.

To get the pyramid, one first needs to apply transformations to the left of M until all the elements

below the diagonal are zeroed. This requires in total n(n−1)
2 core transformations. We will not go

into the details, but one can also obtain an upside down pyramid in the QR factorization.

2If the matrix exhibits particular structure, core transformations could equal the identity and are therefore not
shown in the pyramidal structure.
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We will now start executing similarity transformations annihilating thereby core transforma-
tions from the pyramid until the desired pattern is obtained.

For example, suppose that we want to eliminate a sequence of transformations on the left side
of the pyramid, namely the three leftmost transformations in the picture, which we call G1, G2

and G3. We multiply M on the left by GH
3 G

H
2 G

H
1 and on the right by G1G2G3. We obtain

M1 =
��
��
��

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�� � � �




× × × × ×
× × × ×
× × ×
× ×
×




�
�
�

�
�
�

.

The six leftmost transformations will annihilate each other, while the three rightmost ones can be
transported to the other side of the upper triangular matrix:

M1 =

��
�
�
�
�

�
�
�
�
�� � �

�
�
�

�
�
�




× × × × ×
× × × ×
× × ×
× ×
×



.

We merge the last three transformations into what is left of the pyramid by means of repeated
fusion and turnover operations, obtaining the following pattern

M1 =

��
�
�
�
�

�
�
�
�
�� � �




× × × × ×
× × × ×
× × ×
× ×
×



,

where the three leftmost transformations have been eliminated. To annihilate a sequence on
the right we proceed in a similar way. Suppose that we want to eliminate the two rightmost
transformations in the factorization of M1. We first move them to the other side of the upper
triangular matrix:

M1 =

��
�
�
�

�
�
�� �




× × × × ×
× × × ×
× × ×
× ×
×


 �� ��

.

We call the two new transformations obtained G4 and G5, then we multiply M1 on the right by
GH

5 G
H
4 and on the left by G4G5. We obtain:

M2 = ��
��

��
�
�
�

�
�
�� �




× × × × ×
× × × ×
× × ×
× ×
×


 �� ��

�
�
�
�

.

The four rightmost transformations will vanish and the two leftmost ones can be merged into the
remaining ones by fusion and turnover operations as before:

M2 =

��
�
�
�

�
�
�� �




× × × × ×
× × × ×
× × ×
× ×
×



.

4



Repeating these procedures n − 2 times we eventually obtain a matrix in extended Hessenberg
form, where the unitary factor follows a prescribed pattern

Mn−2 =

��
�
�
�

�
�
�




× × × × ×
× × × ×
× × ×
× ×
×



.

We will call a pattern, as the one depicted above, a twisted pattern, and we will describe
it through a position vector p ∈ {`, r}n−2. For a unitary matrix Q in condensed form Q =
G1 · · ·Gn−1, the corresponding position vector is given by p = (p1, . . . , pn−2) where

pi =

{
`, if Gi is on the left of Gi+1

r, if Gi is on the right of Gi+1
.

For example, the pattern chosen for the matrix Mn−2 above is given by p = (`, r, r). We also
define rev(p) = (pn−2, . . . , p1) and −p = (−p1, . . . ,−pn−2), where −pi = ` if pi = r and −pi = r
if pi = `.

Note that an extended unitary matrix Q = G1 · · ·Gn−1 can always be factored as Q = QdQa,
where Qd and Qa are respectively a (non necessarily consecutive) descending and an ascending
sequence of transformations. The factor Qd contains all the transformations Gi such that pi = `
and the factor Qa contains all the transformations Gi such that pi = r. The transformation Gn−1
can be stored in any of the two factors. We call such a factorization a DA-factorization of Q and
use it later on to prove some theoretical facts.

3 Hamiltonian matrices

A Hamiltonian matrix equals

H =

[
A G
F −AH

]
∈ C2n×2n,

where all blocks A, G and F have size n×n and F , G are Hermitian. Note that this is equivalent
to HJ being Hermitian, where

J =

[
In

−In

]
.

In order to preserve the Hamiltonian structure within a Hamiltonian QR algorithm, it is possible
to make use of symplectic matrices defined as follows.

Definition 3. A matrix S ∈ C2n×2n is symplectic if SHJS = J .

Symplectic matrices are particularly interesting in the context of Hamiltonian matrices because
of the following result [13].

Lemma 4. Let H,S ∈ C2n×2n be a Hamiltonian and a symplectic matrix respectively, then SHS−1

is Hamiltonian.

In practice, for stability reasons, we will not consider the whole family of symplectic matrices,
but restrict ourselves to the family of unitary symplectic matrices, which are described as follows;
see [13] for details.

Lemma 5. A unitary matrix S ∈ C2n×2n is symplectic if and only if

S =

[
U1 U2

−U2 U1

]
,

where U1, U2 ∈ Cn×n.
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In the classic QR algorithm [17], two matrix forms play a fundamental role: the Schur form,
which is the goal of the whole computation, and the Hessenberg form, which is the convenient
intermediate form exploited by the iterative method. Both of these forms do, however, not exist
for Hamiltonian matrices, and an adaptation of these two concepts to the Hamiltonian setting is
required.

Definition 6. Let H ∈ C2n×2n be a Hamiltonian matrix, the decomposition H = UHTU is a
Hamiltonian Schur form of H if U is unitary and symplectic, and

T =

[
A G
−AH

]

is Hamiltonian with the upper-left block A ∈ Cn×n upper triangular. A matrix with the same
structure as T is a Hamiltonian upper triangular matrix.

Although the Hamiltonian Schur form has similar features to the classic Schur form, in the
sense that both reveal the eigenvalues of the matrix along the diagonal, its existence is not for
granted in the Hamiltonian setting. Nevertheless, under some assumptions, conditions on the
existence are known, as illustrated by the following theorem.

Theorem 7 (Theorem 3.1 in [13]). Let H ∈ C2n×2n be a Hamiltonian matrix. If H has no
eigenvalues on the imaginary axis, then a Hamiltonian Schur form of H exists.

The classic Hamiltonian QR algorithm [5] makes use of an intermediate Hamiltonian condensed
form to compute eigenvalues which is named the Hamiltonian Hessenberg form.

Definition 8. A Hamiltonian matrix

H =

[
A G
F −AH

]
∈ C2n×2n

is in Hamiltonian Hessenberg form if A ∈ Cn×n is a classical Hessenberg matrix and F ∈ Cn×n

is zero except for the possibly nonzero entry fn,n.

Conditions on the existence of a Hamiltonian Hessenberg form are given in [2] (see also [1,14]).
In [5], a procedure is described to compute the Hamiltonian Hessenberg form via symplectic

unitary similarities. This method is applicable to a subfamily of the Hamiltonian matrices, namely
those matrices whose block F has rank at most 1. In this work we extend the Hamiltonian
condensed form, thereby still restricting ourselves to a block F of rank 1.

Two other classes of important matrices are the K-Hamiltonian and K-symplectic matrices,
defined below.

Definition 9. Let

Φ = Φn ∈ Cn×n =




1

. .
.

1


 ,

and

K ∈ C2n×2n =

[
I

Φ

]
.

A matrix H ∈ C2n×2n is K-Hamiltonian if KHK is Hamiltonian. Similarly, we call a matrix
S ∈ C2n×2n K-symplectic if KSK is symplectic.

Note that, if H is a Hamiltonian matrix as in (1), we can construct the corresponding K-
Hamiltonian matrix

KHK =

[
A GΦ

ΦF −ΦAHΦ

]
,
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where both blocks ΦF and GΦ are per-Hermitian.
It is simple to prove that a Hamiltonian matrix H is in Hamiltonian Hessenberg (upper trian-

gular) form if and only if the related K-Hamiltonian matrix KHK is in upper Hessenberg (upper
triangular) form. Similarly, K-symplectic matrices play for K-Hamiltonians the same role as that
of symplectic matrices in the Hamiltonian framework: they preserve the K-Hamiltonian structure
in case of similarity transformations.

K-Hamiltonian matrices are a powerful tool, because they allow one to redefine the classical
Hamiltonian QR method: if we switch to the K-Hamiltonian framework, the Hamiltonian QR
algorithm is a particular instance of the more general bidirectional implicit QR method described
in [16].

In the remainder of the text we will work with both related families, switching from Hamiltonian
to K-Hamiltonian at our convenience.

It is also important to consider that the unitary core transformations from Definition 1 cannot
be used directly within the (K-)Hamiltonian framework, because they are not (K-)symplectic.
For this reason we introduce the following.

Definition 10. A unitary K-symplectic core transformation is a matrix G ∈ C2n×2n equal to one
of the two following forms:

• type I: G is equal to the identity except for two unitary 2-by-2 blocks Gi = G(i : i+1, i : i+1)
and G2n−i = G(2n− i, 2n− i+ 1, 2n− i : 2n− i+ 1), such that Gi = ΦG2n−iΦ;

• type II: G is equal to the identity except for the 2-by-2 block

Gn = G(n : n+ 1, n : n+ 1) =

[
g11 g12
g21 g22

]
,

such that all the following equations hold

ḡ11g21 − ḡ21g11 = 0, ḡ12g21 − ḡ22g11 = −1,

ḡ11g22 − ḡ21g12 = 1, ḡ12g22 − ḡ22g12 = 0,

ḡ11g11 + ḡ21g21 = 1, ḡ12g11 + ḡ22g21 = 0,

ḡ11g12 + ḡ21g22 = 0, ḡ12g12 + ḡ22g22 = 1.

K-symplectic core rotations of the first type, have two active parts

Gi =

[
c s
−s̄ c̄

]
and G2n−i =

[
c̄ −s̄
s c

]
,

which will be depicted, similarly to the regular ones, by two arrow-headed brackets �� on the same
vertical line. The condition stated in the second point could seem very strong, but it is fulfilled,
for example, by the simple real rotation

Gn =

[
c s
−s c

]
,

where both c and s are real, and c2 + s2 = 1. In this work, we will actually not use core
transformations of the second type, but they are compulsory in [6] and included for completeness.

4 The extended Hamiltonian Hessenberg form

In this section we present a series of theoretical results that will lead to the definition of the
(K-)Hamiltonian extended Hessenberg form. More precisely, the (K-)Hamiltonian structure will
impose some constraints on the pattern of rotations arising in the QR factorization of the extended
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Hamiltonian Hessenberg form. We will investigate here the structure of the pattern and we will
prove that it is palindromic.

We prove that the pattern of a condensed unitary matrix is reversed through a flip similarity
of its Hermitian transpose.

First, observe that if M = M1 ⊕M2 ⊕ · · · ⊕Mt is a block diagonal matrix, then ΦMΦ =
(ΦMtΦ)⊕ · · ·⊕ (ΦM2Φ)⊕ (ΦM1Φ). In particular, this implies that for any 1 6 k < n and for any

core transformation Gk, there exists another core transformation G̃n−k, such that ΦGkΦ = G̃n−k.

Theorem 11. Let Q ∈ Cn×n be a condensed unitary matrix whose pattern is determined by the
position vector p = [p1, p2, . . . , pn−2] and n > 2. Then the matrix ΦQHΦ is a condensed unitary
matrix associated to the position vector rev(p).

Proof. The proof is based on induction on n. For n = 2, the vector p is void, so there is nothing
to prove.

Let n > 2 and assume that we have already proved the theorem for matrices of size n− 1. We
have two cases: p1 = r or p1 = `.

If p1 = r, then there exists a core transformationG1 and a condensed matrixQ1 ∈ C(n−1)×(n−1),
with pattern p(1) = [p2, . . . , pn−2], such that

Q = G1

[
1 0
0 Q1

]
.

We get

ΦQHΦ = Φ

[
1 0
0 QH

1

]
ΦΦGH

1 Φ =

[
ΦQH

1 Φ 0
0 1

]
G̃n−1.

By inductive hypothesis, ΦQH
1 Φ is a condensed unitary matrix with pattern rev(p(1)) = [pn−2, . . . , p2].

Thus the product [
ΦQH

1 Φ 0
0 1

]
G̃n−1

is another condensed unitary matrix. The post-multiplication by G̃n−1 implies that the last letter
in the pattern of ΦQHΦ is r = p1. Therefore the pattern of ΦQHΦ is [pn−2, . . . , p2, p1], which
concludes the proof of the first part.

The case p1 = ` is specular: since G1 is a right factor of Q, G̃n−1 becomes a left factor of
ΦQHΦ, so the last letter in its pattern is ` = p1.

We indicate by Qd(i : j) an n × n unitary matrix obtained as a descending sequence of core
transformations GiGi+1 · · ·Gj−1. A similar notation Qa(i : j) refers to an ascending sequence.

Lemma 12. Let Qd(i : j) ∈ Cn×n be a descending sequence of core transformations, then there
exists Qa(i : j) such that Qd(i : j)H = Qa(i : j). Moreover, there exists a descending sequence
Qd(n− j + 1 : n− i+ 1), such that ΦQd(i : j)HΦ = Qd(n− j + 1 : n− i+ 1).

Proof. The first part is obtained by writing

Qd(i : j) = GiGi+1 · · ·Gj−1 ⇒ Qd(i : j)H = GH
j−1 · · ·GH

i+1G
H
i ,

which shows that Qd(i : j)H is an ascending sequence.
For the second part, observe that for any 1 6 k < n, and for any core transformation Gk, there

exists G̃n−k such that ΦGkΦ = G̃n−k. This fact yields

ΦQd(i : j)HΦ = (ΦGH
j−1Φ)(ΦGH

j−2Φ) · · · (ΦGH
i+1Φ)(ΦGH

i Φ) =

G̃n−j+1G̃n−j+2 · · · G̃n−i−1G̃n−i = Qd(n− j + 1 : n− i+ 1).
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In the same way we can prove the following.

Lemma 13. Let Qa(i : j) ∈ Cn×n be an ascending sequence of core transformations, then there
exists Qd(i : j) such that Qa(i : j)H = Qd(i : j). Moreover, there exists an ascending sequence
Qa(n− j + 1 : n− i+ 1), such that ΦQa(i : j)HΦ = Qa(n− j + 1 : n− i+ 1).

Another interesting result about K-symplectic matrices is the following.

Theorem 14. Let T ∈ Cn×n be a condensed unitary K-symplectic matrix with pattern described
by p ∈ {`, r}n−2. Then p is anti-palindromic, in other words, rev(p) = −p.

Proof. We know from Theorem 11 that ΦTHΦ has pattern rev(p). On the other hand, it is easy
to see that the pattern of TH is −p. Since any unitary K-symplectic matrix can be written (see
Lemma 5) as

T =

[
U1 U2Φ
−ΦU2 ΦU1Φ

]
,

we have

ΦTHΦ =

[
UH
1 UH

2 Φ
−ΦUH

2 ΦUH
1 Φ

]
=

[
I 0
0 −I

]
TH

[
I 0
0 −I

]
.

The transformation TH →
[
I 0
0 −I

]
TH

[
I 0
0 −I

]
preserves the pattern. Thus rev(p) = −p.

Condensed K-symplectic unitary matrices are not used explicitly in the algorithm for the
reduction to extended Hessenberg form, but the previous property will be used later, when defining
the extended K-Hamiltonian Hessenberg form.

To simplify the presentation, we introduce the matrices

P =

[
In 0
0 −In

]
, L = PΦ2n =

[
0 Φn

−Φn 0

]
= KJK, (2)

where J and K are the same as in Section 3. Both K-Hamiltonian and K-symplectic matrices
can be characterized in terms of L as follows.

Lemma 15. The matrix H ∈ C2n×2n is K-Hamiltonian if and only if LH is Hermitian if and
only if H = LHHL. The matrix T ∈ C2n×2n is K-symplectic if and only if TLTH = L, and is
unitary symplectic if and only if LT = TL.

Proof. A matrix H is K-Hamiltonian if and only if KHK is Hamiltonian. That is, KHKJ
is Hermitian. Notice that LH = −L, so KHKJ = −JKHHK, which is equivalent to HL =
−LHH = (HL)H which, in turn, is equivalent to H = LHHL.

A matrix T is K-symplectic if and only if KTK is symplectic. This means, by definition,
KTKJKTHK = J , which is equivalent to TLTH = L. Moreover, If T is unitary, we have
TL = LT .

To proceed further, we need to recall that the patterns arising in the factorization of a com-
pressed unitary matrix are closely linked to rational Krylov matrices. Suppose M = QR and let p
be the position vector of Q. We then construct the associated Krylov matrix Kp(M,v) as follows.
The first column is always the vector v, the others are of the form M jv, where j can be positive
or negative. More precisely, the (i− 1)-st column is determined by pi. Suppose that the first i− 1
columns of Kp(M, v) have been determined, then the i-th column is M jv, where

j =

{
max{k ∈ Z : Mkv is one of the first i− 1 columns}+ 1, if pi = `

min{k ∈ Z : M−kv is one of the first i− 1 columns} − 1, if pi = r
.

Since p has only n − 2 elements, the last vector in the Krylov sequence is not defined. In fact it
does not matter, pn−1 can be chosen as ` or r indifferently, as the complete span of the subspace
will be identical. The following result was proven in [15].
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Lemma 16. Let M = QR be a nonsingular matrix and R an upper triangular matrix. Suppose the
unitary factor Q is in irreducible condensed form, which means none of its core transformations
are equal to the identity. If p is the associated position vector, then Kp(M, e1) is upper triangular.

Another result, which is particularly handy in dealing with K-Hamiltonian matrices, is the
following.

Lemma 17. Let M = QR be a nonsingular matrix and R an upper triangular matrix. Suppose
the unitary factor Q is in irreducible condensed form and follows the pattern p. Then the matrix
Krev(p)(ΦM

HΦ, e1) = ΦKrev(p)(M
H , en) is upper triangular.

Proof. We observe that if M = QR, then ΦMHΦ = ΦRHΦΦQHΦ, where ΦRHΦ is upper triangu-
lar and ΦQHΦ is a condensed unitary matrix whose pattern is rev(p) (see Theorem 11). Moving

ΦQHΦ to the other side of ΦRHΦ, we get an upper triangular matrix R̃ and a condensed unitary
matrix Q̃ with the same pattern as ΦQHΦ, such that ΦMHΦ = Q̃R̃. Using Lemma 16, we have
that Krev(p)(ΦM

HΦ, e1) is upper triangular and the proof is completed.

Another technical result is the following.

Lemma 18. Let M ∈ Cn×n be a nonsingular matrix and p ∈ {`, r}n−2 a position vector. If
M = QR, where Q is an irreducible condensed unitary matrix whose pattern is determined by p,
then the matrix Kp′(M, e1) is not upper triangular, for each p′ 6= p.

Proof. Consider first the case p1 6= p′1. If p1 = `, then there exists a core transformation G1

acting just on the rows 1 and 2 and a unitary matrix Q =
[
1 0
0 Q′

]
, with Q′ irreducible, such

that M = G1QR. We depict by ẽi ∈ Cn any vector whose first i entries are the only nonzero
entries. The second column of Kp(M, e1) is Me1 = G1QRe1 = G1ẽ1 = ẽ2. The second column of
Kp′(M, e1) is M−1e1 = R−1QHGH

1 e1 = R−1QH ẽ2. Given that QH ẽ2 6= ẽ2, the matrix Kp′(M, e1)
is not upper triangular. The case p1 = r is similar.

Now assume that s > 1, pi = p′i for each i < s and ps 6= p′s. We can distinguish four cases

1. ps = `, p′s = r and ps−1 = p′s−1 = r;

2. ps = r, p′s = ` and ps−1 = p′s−1 = r.

3. ps = r, p′s = ` and ps−1 = p′s−1 = `;

4. ps = `, p′s = r and ps−1 = p′s−1 = `;

In case 1, the transformation Gs is the corner of a bend sequence (r, `) in the pattern p, while
it is in the middle of an ascending sequence in the pattern p′.

�
�
�
�
��

�
�
�

�
�
�

This means that the s-th column of Kp(M, e1) and Kp′(M, e1) is of the type ẽs = M−ke1 with k
positive. Thus the (s+ 1)-st column of Kp′(M, e1) is M−1ẽs by induction.

There exist descending sequences Qd0
and Qd2

and an ascending sequence Qa, such that
M = Qd0

GsQd2
QaR. The leftmost and rightmost transformations of Qd2

are of the type Gs+1

and Gt′ respectively, with t′ > s. On the other hand, Qd0 does not act on row s.
We have

M−1ẽs = R−1QH
a Q

H
d2
GH

s Q
H
d0
ẽs

= R−1QH
a Q

H
d2
GH

s ẽs

= R−1QH
a Q

H
d2
ẽs+1

= R−1QH
a ẽt′+1

= ẽt′+1,

,
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thus M−1ẽs is not of the type ẽs+1 and Kp′(M, e1) is not upper triangular.
In case 2, the transformation Gs is the corner of a bend sequence (r, `) in the pattern p′, while

it is in the middle of an ascending sequence in the pattern p.

�
�
�

�
�
�

�
�
�
�
��

This means that the s-th column of Kp(M, e1) and Kp′(M, e1) is of the type ẽs = M−ke1 with k
positive. Thus the (s + 1)-st column of Kp′(M, e1) is Mẽt, where t < s is the smallest index of
the ascending sequence to which the s-th core transformation belongs.

There exist a descending sequence Qd and ascending sequences Qa0 , Qa1 and Qa2 such that
M = QdQa1GsQa2Qa0R. The leftmost and the rightmost transformations in Qa1 are of the type
Gt′ and Gs+1 respectively, with t′ > s; while the leftmost and the rightmost transformations in
Qa2

are of the type Gs−1 and Gt respectively. Notice that Qa0
does not act on row t.

We have

Mẽt = QdQa1
GsQa2

Qa0
Rẽt

= QdQa1
GsQa2

Qa0
ẽt

= QdQa1
GsQa2

ẽt

= QdQa1
Gsẽs

= QdQa1
ẽs+1

= Qdẽt′+1

= ẽt′+1,

thus Mẽt is not of the type ẽs+1 and Kp′(M, e1) is not upper triangular.

Cases 3 and 4 are dealt with similarly.

Corollary 19 (Uniqueness of the QR factorization). Let M ∈ Cn×n be a nonsingular matrix and

p, q ∈ {`, r}n−2 two position vectors. Suppose M = QR = Q̃R̃, where Q and Q̃ are irreducible

condensed unitary matrices with patterns determined by p and q respectively, and R, R̃ are upper
triangular matrices. Then p = q.

Proof. We know that Kp(M, e1) and Kq(M, e1) are upper triangular, but Lemma 18 forces p =
q.

The previous results apply to any generic nonsingular matrix. IfM is, moreover, K-Hamiltonian,
something more can be said.

Lemma 20. Let H ∈ C2n×2n be a nonsingular K-Hamiltonian matrix and p ∈ {`, r}2n−2 a
position vector. Suppose H = QR, where Q is a condensed unitary matrix with pattern determined
by p. Then the matrix Krev(p)(H, e1) is upper triangular.

Proof. We know from Lemma 17 thatKrev(p)(ΦH
HΦ, e1) is upper triangular. IfH isK-Hamiltonian,

then

Krev(p)(ΦH
HΦ, e1) = PKrev(p)(PΦHHΦP, Pe1)

Pe1=e1= PKrev(p)(−LHHL, e1) = PKrev(p)(−H, e1),

where P and L are defined in (2). Since the latter matrix is upper triangular, we have that
Krev(p)(H, e1) is upper triangular.

Now we are able to prove the main result of this section.
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Theorem 21. Let H ∈ C2n×2n be a nonsingular K-Hamiltonian matrix and p ∈ {`, r}2n−2
a position vector. If H = QR, where Q is a condensed unitary matrix following the pattern
determined by p, then p is palindromic, namely p = rev(p).

Proof. The proof is obtained combining Lemma 20 and Lemma 18: from the former we know that
both Kp(H, e1) and Krev(p)(H, e1) are upper triangular. From the latter we know that the only
upper triangular matrix is Kp(H, e1), from which we conclude that p = rev(p).

We have shown that the condensed form of a nonsingular K-Hamiltonian matrix has a palin-
dromic position vector. This means that the central part of the vector (say, (pn, pn+1)) is of the
type (`, `) or (r, r), since 2n− 2 is even. Thus Q can be factored in just one of the two following
ways

1. Descending type:

Q =

[
Q1 0
0 I

]
Gn

[
I 0
0 Q2

]
; (3)

2. Ascending type:

Q =

[
I 0

0 Q̂2

]
Ĝn

[
Q̂1 0
0 I

]
; (4)

where Q1, Q2, Q̂1 and Q̂2 are condensed sequences of core transformations of size n. Notice that,
by Theorem 21, if the pattern of Q1 (Q̂1) is p, then the pattern of Q2 (Q̂2) is rev(p).

In the first case, there exist an upper triangular matrix R̃ and a condensed matrix Q̃2 with
the same pattern as the one of Q2 (namely, rev(p)) such that

H =

[
Q1 0
0 I

]
GnR̃

[
I 0

0 Q̃2

]
. (5)

In the second case, the situation is similar: the first and the last matrix of the decomposition of
H are swapped.

Extended K-Hamiltonian Hessenberg matrices can be factored as in (3) and (4), the upper
triangular matrix R is positioned between two factors as in (5). This factorization is used, as it
reveals information, which is not the case if we would have used the classical QR factorization as
we will show in Corollary 24. The essential uniqueness of the QR factorization carries over to the
factorization above, i.e., if one has two factorizations of an extended K-Hamiltonian Hessenberg
matrix of the URV form (5), then these factorizations will be essentially identical. The essentially
means up to unimodular scaling. This follows easily by rewriting the URV factorization as a QR
factorization by using the techniques described in Section 2.

To conclude, we will prove that Q̃2 and ΦQH
1 Φ are essentially identical.

Theorem 22. Let H,Q,R and the palindromic position vector p ∈ {`, r}2n−2 be as in Theorem 21.
Then H admits the two decompositions

H =

[
Q1 0
0 I

]
GnR

[
I 0
0 ΦQH

1 Φ

]
; (6)

H =

[
I 0
0 Q2

]
GnR

[
ΦQH

2 Φ 0
0 I

]
; (7)

where Q1 and Q2 are irreducible condensed matrices of size n, Gn is a core transformation of size
2n acting on the rows n and n + 1, and R is an upper triangular matrix. Moreover, the matrix
GnR is K-Hamiltonian.
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Proof. We will prove the statement only for the descending type. We know that theK-Hamiltonian
matrix H can be factored as

H =

[
Q1 0
0 I

]
GnR̃

[
I 0

0 Q̃2

]
. (8)

Since H = LHHL, where L is defined in (2), we get

H = L

[
I 0

0 Q̃H
2

]
R̃HGH

n

[
QH

1 0
0 I

]
L =

[
ΦQ̃H

2 Φ 0
0 I

]
LR̃HL LGH

n L

[
I 0
0 ΦQH

1 Φ

]
.

Since LR̃HL is upper triangular and LGH
n L a core transformation, there exist a core transformation

Ĝn acting on the rows n and n+ 1 and an upper triangular matrix R̂ such that

H =

[
ΦQ̃H

2 Φ 0
0 I

]
ĜnR̂

[
I 0
0 ΦQH

1 Φ

]
. (9)

Applying the essentially uniqueness of the URV factorization to (8) and (9), since the patterns of

Q̃2 and ΦQH
1 Φ are the same, there exists a diagonal matrix D with |dii| = 1 so that Q̃2 = DΦQH

1 Φ.
Thus, from (8), we have

H =

[
Q1 0
0 I

]
GnR̃

[
I 0

0 Q̃2

]
=

[
Q1 0
0 I

]
GnR

[
I 0
0 ΦQH

1 Φ

]
,

where R is obtained merging D into R̃.
To conclude the proof, observe that since H is K-Hamiltonian, we have LHHL = H. Since

LHHL =

[
Q1 0
0 I

]
LRHGH

n L

[
I 0
0 ΦQH

1 Φ

]
,

we have LRHGnL = GnR which implies that GnR is K-Hamiltonian.

The previous theorem shows that there are essentially two possible classes of condensed forms
for K-Hamiltonian matrices, yielding the following.

Definition 23 (K-Hamiltonian extended Hessenberg form). A K-Hamiltonian matrix H is in
extendedK-Hamiltonian Hessenberg form of descending type with pattern p if it can be decomposed
as in (6), where Q1 has pattern p. Similarly, H is in extended K-Hamiltonian Hessenberg form
of ascending type with pattern p if it can be decomposed as in (7), where Q1 has pattern p.

It was already stated before that the URV factorization of the extended K-Hamiltonian Hes-
senberg matrix reveals more information than its QR factorization would. In fact, the matrix GnR̃
in the middle is K-Hamiltonian; while a definition of the type H = QR, where Q is condensed,
would not maintain the structure. The following result follows from Theorem 14 and Theorem 21.

Corollary 24. Let H ∈ C2n×2n be a nonsingular K-Hamiltonian matrix and p ∈ {`, r}2n−2 a
position vector. If H = QR, where Q is an irreducible condensed unitary matrix, then Q is not
K-symplectic.

5 The algorithm

In this section we describe the transformation to extended Hamiltonian Hessenberg form in a
constructive way. For simplicity, all the operations are executed on K-Hamiltonian matrices,
but the results can be translated easily to the Hamiltonian setting by means of permutations, as
explained in Definition 9. We will also prove that the transformation is essentially unique.
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Let us consider a K-Hamiltonian matrix

H ∈ C2n×2n =

[
A GΦ

ΦF −ΦAHΦ

]
, (10)

with rank(F ) 6 1 which means that there exists a vector v ∈ Cn such that F = vvH .
Our goal is to compute a decomposition of H as described in Definition 23. As we have seen,

two cases are possible. We will described two reduction procedures.

5.1 K-Hamiltonian extended Hessenberg form of descending type

Consider the matrix H as above, and compute U such that UHΦv = αe1 and U is an ascending
sequence of core transformations. Thus vH = αeHn (ΦUΦ) and

H =

[
I

U

] [
AΦUΦ GΦ
|α|2e1eHn −UHΦAHΦ

] [
ΦUHΦ

I

]
.

Now compute a QR factorization AΦUΦ = WR as in Section 4, where W is a unitary matrix given
by an upside-down pyramid of core transformations. Then −UHΦAHΦ = (−ΦRHΦ)(ΦWHΦ) is
an RQ factorization, where ΦWHΦ is in pyramidal shape. Thus

H =

[
W

U

] [
R G̃Φ

|α|2e1eHn −ΦRHΦ

] [
ΦUHΦ

ΦWHΦ

]
(11)

=

� � � ��
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�

�
�
�




× × × × × × × × × ×
× × × × × × × × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × × ×

× × × ×
× × ×
× ×
×




�
�
�

�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�� � � �

,

where G̃ = WHGW .
Note that all the operations performed until this point do not modify the original matrix, they

only serve to rewrite H in a more convenient factored form. Only now we start to apply a series
of similarities through K-symplectic unitary transformations. First of all, we want to eliminate U
and ΦUHΦ. Because of the underlying structure, the K-symplectic transformation

Ũ =

[
ΦUΦ

U

]

and its Hermitian transpose, applied to H on the right and on the left, respectively, will annihilate
U and ΦUHΦ simultaneously:

ŨHHŨ =

[
ΦUHΦW

I

] [
R G̃Φ

|α|2e1eHn −UHΦRHΦ

] [
I

ΦWHΦU

]

=

� � � � �
�
� �
�
�
�
�
�
�

�
� �

�
�
�
�

�
� �

�
�

� �




× × × × × × × × × ×
× × × × × × × × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × × ×

× × × ×
× × ×
× ×
×




� �
�
�
� �

�

�
�
�
�
� �

�

�
�
�
�
�
�
� �
�

� � � � �

.
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Remember that K-symplectic core transformations come in pairs (see Definition 10). The trans-
formations that remain can be merged into the two pyramids, represented by W and ΦWHΦ, by
means of successive turnover and fusion operations. This results in the factorization

ŨHHŨ =

� � � ��
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�




× × × × × × × × × ×
× × × × × × × × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × × ×

× × × ×
× × ×
× ×
×




�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�� � � �

.

Now we exploit the techniques described in Section 2 to get any desired pattern p out of the
upper-left pyramid, which represents ΦUHΦW . We do so by means of K-symplectic transforma-
tions. The K-symplectic constraint makes sure that the pattern extracted from the bottom-right
pyramid, which represents ΦWHΦU , is exactly rev(p). After n− 2 steps, we get

Ṽ HHṼ =

[
Q

I

][
R̂ ĜΦ

|α|2e1eHn −UHΦR̂HΦ

] [
I

ΦQHΦ

]

=

��
�
�
�

�
�
�




× × × × × × × × × ×
× × × × × × × × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × × ×

× × × ×
× × ×
× ×
×




�
�
�

�
�
�
��

,

where the K-symplectic matrix Ṽ is the product of all the similarities performed, Ĝ is Hermitian,
R̂ is upper triangular and Q is a unitary condensed matrix, which obeys the pattern p.

5.2 K-Hamiltonian extended Hessenberg form of ascending type

This second case is only slightly different form the first one. For this reason, we will omit some
passages that are basically the same as in Section 5.1. Let H be the same K-Hamiltonian matrix
as in (10).

We start by computing an RQ factorization A = RW , where W is an upside-down pyramid of
core transformations. Then −ΦAHΦ = (ΦWHΦ)(−ΦRHΦ) is a QR factorization, where ΦWHΦ
is pyramid-shaped, and

H =

[
I

ΦWHΦ

] [
R GΦ

ΦF̃ −ΦRHΦ

] [
W

I

]
.

If F = vvH then F̃ = wwH , where w = WHv. We proceed computing a unitary matrix U such
that UHΦw = αe1 and U is represented by an ascending sequence of transformations. Note that
U and W are different from those used in the previous section. We obtain

H =

[
I

ΦWHΦU

] [
RΦUΦ GΦ
|α|2e1eHn −UHΦRHΦ

] [
ΦUHΦW

I

]
,

where

ΦWHΦU =

� �
�
�
� �

�

�
�
�
�
� �

�

�
�
�
�
�
�
� �
�

� � � � �
,
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[
RΦUΦ GΦ
|α|2e1eHn −UHΦRHΦ

]
=




× × × × × �
× × × ×

�
�

× × ×
�
�

× ×
�
�

×
�

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

× � × × × × ×�
� × × × ×�
� × × ×�
� × ×�

×




.

By multiple turnover and fusion operations, we merge the two ascending sequences into the two
pyramids, obtaining H of the form

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�� � � �




× × × × × �
× × × ×

�
�

× × ×
�
�

× ×
�
�

×
�

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

× � × × × × ×�
� × × × ×�
� × × ×�
� × ×�

×




� � � ��
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

.

Finally, we move the remaining descending sequences to the other side of the corresponding upper
triangular block. We get

H =

[
ΦŨΦ

ΦW̃HΦ

][
R̃ G̃Φ

|α|2e1eHn −ΦR̃HΦ

][
W̃

ŨH

]

=

��
��
��
��

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�� � � �




× × × × × × × × × ×
× × × × × × × × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × × ×

× × × ×
× × ×
× ×
×




� � � ��
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

��
��
��
��

.

This is a specular situation with respect to (11), thus we can proceed in a similar way. Repeatedly
applying similarities by K-symplectic transformations, we eliminate the two descending sequences
of transformations, and manipulate the two pyramids, in order to get the desired patterns:

Ṽ HHṼ =

[
I

ΦQHΦ

] [
R̂ ĜΦ

|α|2e1eHn −ΦR̂HΦ

] [
Q

I

]

=
��
��
�
�
�
�




× × × × × × × × × ×
× × × × × × × × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × × ×

× × × ×
× × ×
× ×
×




�
�
�
�
��
��

,
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where the K-symplectic unitary matrix Ṽ is the product of all the transformations performed, R̂
is upper triangular and Q is a unitary matrix which obeys the prescribed pattern p.

Remark 25. Suppose a matrix H in extended K-Hamiltonian Hessenberg form of descending
type is given:

H =

[
Q

I

][
R̂ ĜΦ

|α|2e1eHn −ΦR̂HΦ

] [
I

ΦQHΦ

]
.

If we apply the K-symplectic transformation

[
QH

ΦQHΦ

]
H

[
Q

ΦQΦ

]
=

[
I

ΦQHΦ

] [
R̂ ĜΦ

|α|2e1eHn −ΦR̂HΦ

] [
Q

I

]
,

we can get an extended Hessenberg form of ascending type at no additional cost. The reasoning
is of course valid also in the inverse case, when switching from asceding to descending type.

5.3 Uniqueness

Once the transformation to extended K-Hamiltonian Hessenberg form is defined, the next natural
step is to determine to which extent such a transformation is unique. For the general case, the
following result was proved.

Theorem 26 (Theorem 5.1 in [15]). Let M ∈ Cn×n be a nonsingular matrix and p ∈ {`, r}n−2 a
position vector. Let V1 and V2 be two unitary matrices sharing the first column (up to a unimodular
factor) such that

Q1R1 = M1 = V H
1 MV1, Q2R2 = M2 = V H

2 MV2,

where the unitary factors Q1 and Q2 in the QR decomposition of M1 and M2 obey the pattern
specified by p and, in addition, all transformations differ from the identity. Then M1 and M2 are
essentially identical.

This is a generalization of the classic implicit Q-theorem, that ensures essential uniqueness in
the general nonsingular case.

In the K-Hamiltonian case, a few more considerations are needed. First, notice that also the
following result holds.

Theorem 27. Let M ∈ Cn×n be a nonsingular matrix and p ∈ {`, r}n−2 a position vector. Let
V1 and V2 be two unitary matrices sharing the last column (up to a unimodular factor) such that

Q1R1 = M1 = V H
1 MV1, Q2R2 = M2 = V H

2 MV2,

where the unitary factors Q1 and Q2 in the QR decomposition of M1 and M2 obey the pattern
specified by p and, in addition, all transformations differ from the identity. Then M1 and M2 are
essentially identical.

Proof. A simple computation shows that

(
V1Φ

)(
ΦKrev(p)(M

H
1 , en)

)
= Krev(p)(V1M

H
1 V

H
1 , V1en) = Krev(p)(M

H , V1en),

and analogously V2Krev(p)(M
H
2 , en) = Krev(p)(M

H , V2en).
Invoking Lemma 17, we know that ΦKrev(p)(M

H
1 , en) and ΦKrev(p)(M

H
2 , en) are upper trian-

gular. Since V1en = βV2en, we have two QR factorizations of the same matrix

Krev(p)(M
H , V1en) =

(
V1Φ

)(
ΦKrev(p)(M

H
1 , en)

)
=
(
V2Φ

)(
ΦKrev(p)(M

H
2 , en)

)
,

where the unitary factors share the same first column. Because of Theorem 26, V1 and V2 are
essentially identical.

17



Now suppose we have computed a transformation to extended K-Hamiltonian Hessenberg form.
We will consider the descending form case, the other case is analogous.

Ṽ HHṼ =

[
V H

ΦV HΦ

] [
A GΦ

ΦF −ΦAHΦ

] [
V

ΦV Φ

]

=

[
Q

I

][
R G̃Φ

ΦF̃ −ΦRHΦ

] [
I

ΦQHΦ

]
. (12)

The following three equations hold:

V HAV = QR (13)

−Φ(V HAHV )Φ = (−ΦRHΦ)(ΦQHΦ)

ΦV HFV = ΦF̃ (14)

We know that rank(F ) = 1, thus F = vvH for a certain vector v. The only nonzero entry in

ΦF̃ is f̃1,n, thus (14) implies that V HFV = |α|2eneTn , where v = αV en. This means that the last
column of V is determined by the vector v. Now we are ready to present the main result of this
section.

Theorem 28 (Essential uniqueness). Let

H =

[
A GΦ

ΦF −ΦAHΦ

]

be a K-Hamiltonian matrix, where A is nonsingular and rank(F ) = 1. Suppose (12) holds for both
the K-symplectic unitary matrices

Ṽ1 =

[
V1

ΦV1Φ

]
, Ṽ2 =

[
V2

ΦV2Φ

]
.

Suppose that the corresponding unitary matrices V1 and V2 follow the same pattern specified by
p ∈ {`, r}n−2 and all their transformations differ from the identity, then H1 = Ṽ H

1 HṼ1 and

H2 = Ṽ H
2 HṼ2 are essentially equal.

Proof. Because of (14), we know that V1en = βV2en. Furthermore, from (13) we obtain V H
1 AV1 =

Q1R1 and V H
2 AV2 = Q2R2. By Theorem 27 we deduce that Ṽ1 and Ṽ2 are essentially equal.

6 Numerical experiments

In this section we present the results of two types of numerical experiments, the first one esti-
mates the accuracy of the algorithm, the second algorithm illustrates the Ritz-values behavior of
the reduction. The algorithm was implemented in Matlab. Random test blocks A and F were
generated as follows:

A=randn(n)+1i*randn(n);

f=randn(n,1)+1i*randn(n,1);

F=f*f’;

while the block G was generated in two different ways:

• case 1:

G=randn(n)+1i*randn(n);

G=G*G’;

• case 2:
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G=randn(n)+1i*randn(n);

G=(0.5)*(G+G’);

The size n varies between 50 and 500. We tested the accuracy for the following four cases:

1. Hessenberg case: descending type, the transformations in Q follow the pattern p =
(`, . . . , `);

2. Hessenberg-like case: ascending type, the transformations in Q follow the pattern p =
(r, . . . , r);

3. CMV case: ascending type, the transformations in Q follow the pattern p = (. . . , `, r, `, r);

4. Random case: both type and position vector are chosen randomly, p =randi(2,n,1)-1.

The errors in Figures 1 and 2 were measured as

∆ =
‖H − Ṽ H1Ṽ

H‖2
‖H‖2

,

where

H =

[
A GΦ

ΦF −ΦAHΦ

]

is the original K-Hamiltonian matrix, H1 is its extended Hamiltonian Hessenberg form and Ṽ is
the K-symplectic unitary matrix that gives the transformation. The computations were repeated
five times for each size, and the average values are depicted.
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Figure 1: Backward error in case 1.

Although the results show an acceptable accuracy in general, a significant difference exists
between case 1 and 2. In the first case, Hessenberg and random patterns produce bigger errors,
when compared to Hessenberg-like and CMV. On the other hand, in the second case, the Hessen-
berg pattern clearly outperforms the others, and even random patterns perform better than both
Hessenberg-like and CMV. We deduce that not all possible patterns are equally good for a certain
matrix. The strength of our algorithm lies in the freedom of choosing, for each matrix, the con-
densed form that suits the problem the most. In this way, we are able to achieve the best accuracy
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Figure 2: Backward error in case 2.

possible when using the extended Hamiltonian Hessenberg form to compute the eigenvalues of a
Hamiltonian matrix [6]. This is the subject of future research.

In a second experiment, we computed the Ritz values of random real extended K-Hamiltonian
Hessenberg matrices. First we generated a real K-Hamiltonian matrix H1 with equispaced eigen-
values in [−1, 1], a rank 1 bottom-left block ΦF1 and size 2n = 100. We computed its extended

K-Hamiltonian Hessenberg form H̃ in three cases: Hessenberg, Hessenberg-like, and CMV, de-
fined as before. For each m ∈ {1, . . . , 50}, we determined the Ritz values as the eigenvalues of the

submatrices H̃m = H̃(n−m+ 1 : n+m,n−m+ 1 : n+m), making use of the Matlab function
eig.

The first three plots in Figure 3 show the results of these computations. For each value of m
on the x-axis, we plot the computed Ritz values on the y-axis. Red crosses stand for Ritz values
approximating eigenvalues with an absolute error smaller than 10−7.5; yellow crosses indicate good
approximations with absolute errors between 10−7.5 and 10−5; the green crosses are not so good
approximations with errors between 10−5 and 10−2.5; blue crosses are bad approximations, with
errors bigger than 10−2.5. These figures do not exactly mimic the behavior one would expect after
reading [3, 10, 11]. In the K-Hamiltonian setting it appears that the outer eigenvalues are not
found first: the two outer red peaks are not on the outside of the interval for the first three figures.
The last figure, however, does behave as expected, with peaks on the outer parts of the interval.
This last figure stems from a K-Hamiltonian matrix, where the bottom-left block was set to zero,
i.e., we have two completely decoupled eigenvalue problems.

7 Conclusions

In this article we have presented an algorithm to transform a Hamiltonian matrix with lower-left
rank one block to a condensed format, generalizing thereby the classical Hamiltonian Hessenberg
form. The uniqueness of this decomposition was proved. The numerical experiments revealed
new directions for future research: selecting the optimal pattern and predicting the convergence
behavior of the Ritz values are still open questions.
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Figure 3: Ritz values of K-Hamiltonian extended Hessenberg matrices in different test cases.
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